Inverting Schmitt trigger

Rev. 05 — 29 June 2007

1. General description

74AHC1G14 and 74AHCT1G14 are high-speed Si-gate CMOS devices. They provide an inverting buffer function with Schmitt trigger action. These devices are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals.

The AHC device has CMOS input switching levels and supply voltage range 2 V to 5.5 V.

The AHCT device has TTL input switching levels and supply voltage range 4.5 V to 5.5 V.

2. Features

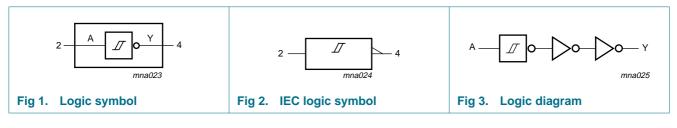
- Symmetrical output impedance
- High noise immunity
- ESD protection:
 - HBM JESD22-A114E: exceeds 2000 V
 - MM JESD22-A115-A: exceeds 200 V
 - CDM JESD22-C101C: exceeds 1000 V
- Low power dissipation
- Balanced propagation delays
- SOT353-1 and SOT753 package options
- Specified from –40 °C to +125 °C

3. Applications

- Wave and pulse shapers
- Astable multivibrators
- Monostable multivibrators

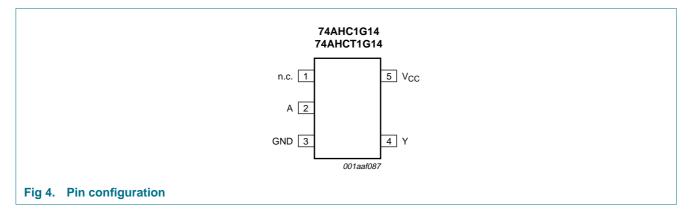
4. Ordering information

Table 1. Orderin	Table 1. Ordering information										
Type number	Package										
	Temperature range	Name	Description	Version							
74AHC1G14GW	–40 °C to +125 °C	TSSOP5	plastic thin shrink small outline package; 5 leads;	SOT353-1							
74AHCT1G14GW			body width 1.25 mm								
74AHC1G14GV	–40 °C to +125 °C	SC-74A	plastic surface-mounted package; 5 leads	SOT753							
74AHCT1G14GV											



Inverting Schmitt trigger

5. Marking


Table 2. Marking codes	
Type number	Marking code
74AHC1G14GW	AF
74AHCT1G14GW	CF
74AHC1G14GV	A14
74AHCT1G14GV	C14

6. Functional diagram

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3.	Pin description	
Symbol	Pin	Description
n.c.	1	not connected
А	2	data input
GND	3	ground (0 V)
Y	4	data output
V _{CC}	5	supply voltage

8. Functional description

Table 4.Function table

H = *HIGH* voltage level; *L* = *LOW* voltage level

Input	Output
A	Y
L	Н
н	L

9. Limiting values

Table 5.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.5	+7.0	V
I _{IK}	input clamping current	V _I < -0.5 V	-20	-	mA
Ι _{ΟΚ}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> _	±20	mA
I _O	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{CC}	supply current		-	75	mA
I _{GND}	ground current		-75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +125 $^{\circ}C$	[2] _	250	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For both TSSOP5 and SC-74A packages: above 87.5 °C the value of P_{tot} derates linearly with 4.0 mW/K.

10. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter Conditions		74AHC1G14			74AHCT1G14			Unit
			Min	Тур	Max	Min	Тур	Max	
V_{CC}	supply voltage		2.0	5.0	5.5	4.5	5.0	5.5	V
VI	input voltage		0	-	5.5	0	-	5.5	V
Vo	output voltage		0	-	V _{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	-40	+25	+125	°C

Inverting Schmitt trigger

11. Static characteristics

Table 7.Static characteristics

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		−40 °C	to +85 °C	–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
For type	74AHC1G14	·								
V _{OH}	HIGH-level	$V_I = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_{O} = -50 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_{O} = -50 \ \mu\text{A}; \ V_{CC} = 3.0 \ \text{V}$	2.9	3.0	-	2.9	-	2.9	-	V
		I_{O} = -50 μ A; V_{CC} = 4.5 V	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.58	-	-	2.48	-	2.40	-	V
		I_{O} = -8.0 mA; V_{CC} = 4.5 V	3.94	-	-	3.8	-	3.70	-	V
V _{OL}	LOW-level	$V_I = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_0 = 50 \ \mu A; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 50 \ \mu A; \ V_{CC} = 3.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 50 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 3.0 V	-	-	0.36	-	0.44	-	0.55	V
		I_{O} = 8.0 mA; V_{CC} = 4.5 V	-	-	0.36	-	0.44	-	0.55	V
lı	input leakage current	$V_1 = 5.5 V \text{ or GND};$ $V_{CC} = 0 V \text{ to } 5.5 V$	-	-	0.1	-	1.0	-	2.0	μΑ
I _{CC}	supply current	$V_{I} = V_{CC}$ or GND; $I_{O} = 0$ A; $V_{CC} = 5.5$ V	-	-	1.0	-	10	-	40	μΑ
Cı	input capacitance		-	1.5	10	-	10	-	10	pF
For type	74AHCT1G14									
V _{OH}	HIGH-level	$V_{I} = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$								
	output voltage	I _O = -50 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -8.0 mA	3.94	-	-	3.8	-	3.70	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 V$								
	output voltage	I _O = 50 μA	-	0	0.1	-	0.1	-	0.1	V
		l _O = 8.0 mA	-	-	0.36	-	0.44	-	0.55	V
lı	input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	-	0.1	-	1.0	-	2.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	1.0	-	10	-	40	μΑ
Δl _{CC}	additional supply current	per input pin; $V_I = 3.4 V$; other inputs at V_{CC} or GND; $I_O = 0 A$; $V_{CC} = 5.5 V$	-	-	1.35	-	1.5	-	1.5	mA
CI	input capacitance		-	1.5	10	-	10	-	10	pF

Inverting Schmitt trigger

11.1 Transfer characteristics

Table 8.Transfer characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V). See Figure 7 and Figure 8.

						,				
Symbol Parameter		Conditions		25 °C		−40 °C t	to +85 °C	–40 °C t	to +125 °C	Unit
		Min	Тур	Max	Min	Max	Min	Max	1	
For type	74AHC1G14									
V _{T+}	positive-going	$V_{CC} = 3.0 V$	-	-	2.2	-	2.2	-	2.2	V
	threshold voltage	$V_{CC} = 4.5 V$	-	-	3.15	-	3.15	-	3.15	V
	voltage	$V_{CC} = 5.5 V$	-	-	3.85	-	3.85	-	3.85	V
V _{T-}	negative-going	$V_{CC} = 3.0 V$	0.9	-	-	0.9	-	0.9	-	V
	threshold voltage	$V_{CC} = 4.5 V$	1.35	-	-	1.35	-	1.35	-	V
	voltage	$V_{CC} = 5.5 V$	1.65	-	-	1.65	-	1.65	-	V
V _H	hysteresis	$V_{CC} = 3.0 V$	0.3	-	1.2	0.3	1.2	0.25	1.2	V
	voltage	$V_{CC} = 4.5 V$	0.4	-	1.4	0.4	1.4	0.35	1.4	V
		$V_{CC} = 5.5 V$	0.5	-	1.6	0.5	1.6	0.45	1.6	V
For type	74AHCT1G14									
V _{T+}	positive-going	$V_{CC} = 4.5 V$	-	-	2.0	-	2.0	-	2.0	V
	threshold voltage	$V_{CC} = 5.5 V$	-	-	2.0	-	2.0	-	2.0	V
V _{T-}	negative-going	$V_{CC} = 4.5 V$	0.5	-	-	0.5	-	0.5	-	V
	threshold voltage	$V_{CC} = 5.5 V$	0.6	-	-	0.6	-	0.6	-	V
V _H	hysteresis	$V_{CC} = 4.5 V$	0.4	-	1.4	0.4	1.4	0.35	1.4	V
	voltage	V _{CC} = 5.5 V	0.4	-	1.6	0.4	1.6	0.35	1.6	V

Inverting Schmitt trigger

12. Dynamic characteristics

Table 9. Dynamic characteristics

GND = 0 V; $t_r = t_f \le 3.0$ ns. For waveform see <u>Figure 5</u>. For test circuit see <u>Figure 6</u>.

Symbol	Parameter	Conditions			25 °C		−40 °C	to +85 °C	-40 °C 1	to +125 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	
For type	74AHC1G14										
t _{pd} propagation	A to Y;	<u>[1]</u>									
	delay	V_{CC} = 3.0 V to 3.6 V	[2]								
		C _L = 15 pF		-	4.2	12.8	1.0	15.0	1.0	16.5	ns
		$C_L = 50 \text{ pF}$		-	6.0	16.3	1.0	18.5	1.0	20.5	ns
		V_{CC} = 4.5 V to 5.5 V	[3]								
		C _L = 15 pF		-	3.2	8.6	1.0	10.0	1.0	11.0	ns
		C _L = 50 pF		-	4.6	10.6	1.0	12.0	1.0	13.5	ns
C _{PD}	power dissipation capacitance	per buffer; $C_L = 50 \text{ pF}; \text{ f} = 1 \text{ MHz};$ $V_I = \text{GND to } V_{CC}$	<u>[4]</u>	-	12	-	-	-	-	-	pF
For type	74AHCT1G1	4									
t _{pd}	propagation delay	A to Y; V _{CC} = 4.5 V to 5.5 V	[1] [3]								
		C _L = 15 pF		-	4.1	7.0	1.0	8.0	1.0	9.0	ns
		C _L = 50 pF		-	5.9	8.5	1.0	10.0	1.0	11.0	ns
C _{PD}	power dissipation capacitance	per buffer; V _I = GND to V_{CC}	[4]	-	13	-	-	-	-	-	pF

[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

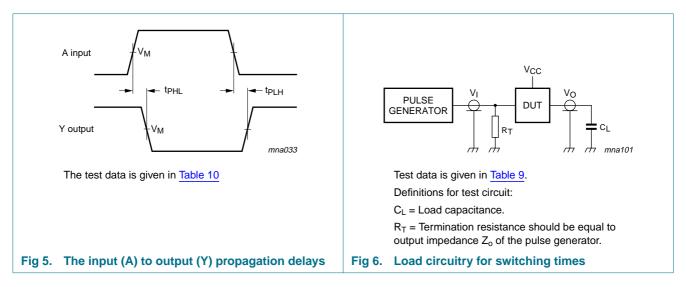
[2] Typical values are measured at V_{CC} = 3.3 V.

[3] Typical values are measured at $V_{CC} = 5.0$ V.

[4] C_{PD} is used to determine the dynamic power dissipation P_D (μ W).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;


 f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

V_{CC} = supply voltage in Volts.

Inverting Schmitt trigger

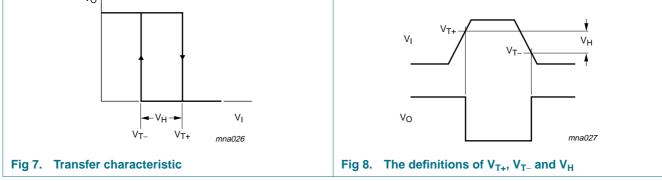
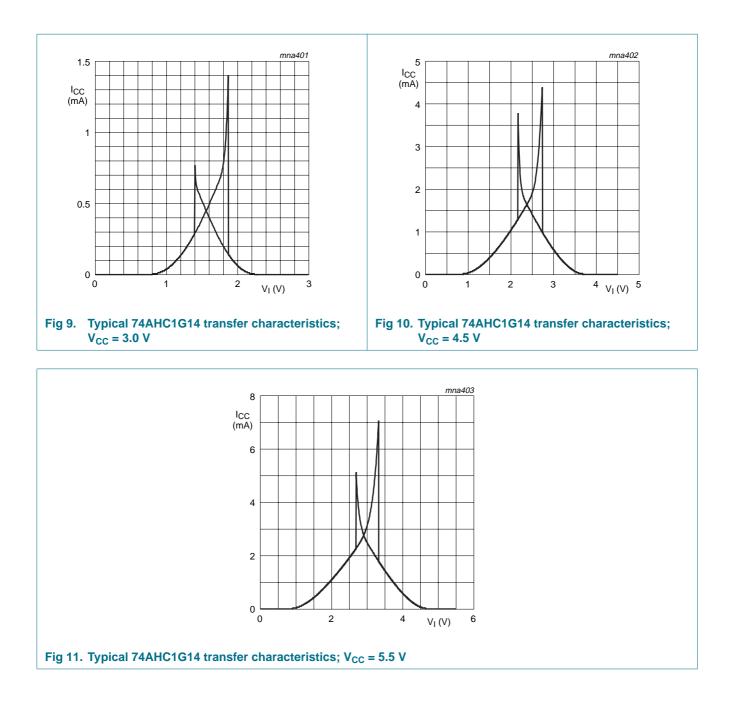
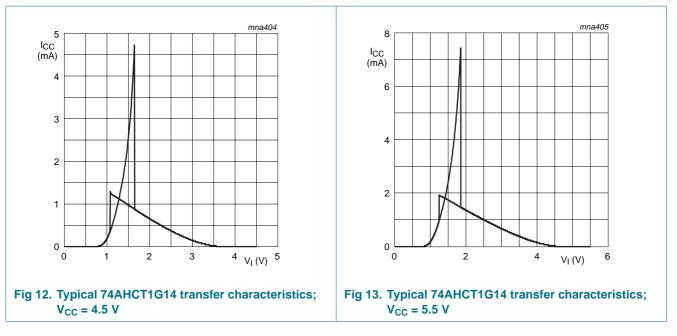

13. Waveforms

Table 10. Test data


Type number	Input	Output	
	VI	V _M	V _M
74AHC1G14	GND to V _{CC}	$0.5 imes V_{CC}$	$0.5 \times V_{CC}$
74AHCT1G14	GND to 3.0 V	1.5 V	$0.5 \times V_{CC}$


74AHC1G14; 74AHCT1G14

Inverting Schmitt trigger

74AHC1G14; 74AHCT1G14

Inverting Schmitt trigger

14. Application information

The slow input rise and fall times cause additional power dissipation, which can be calculated using the following formula:

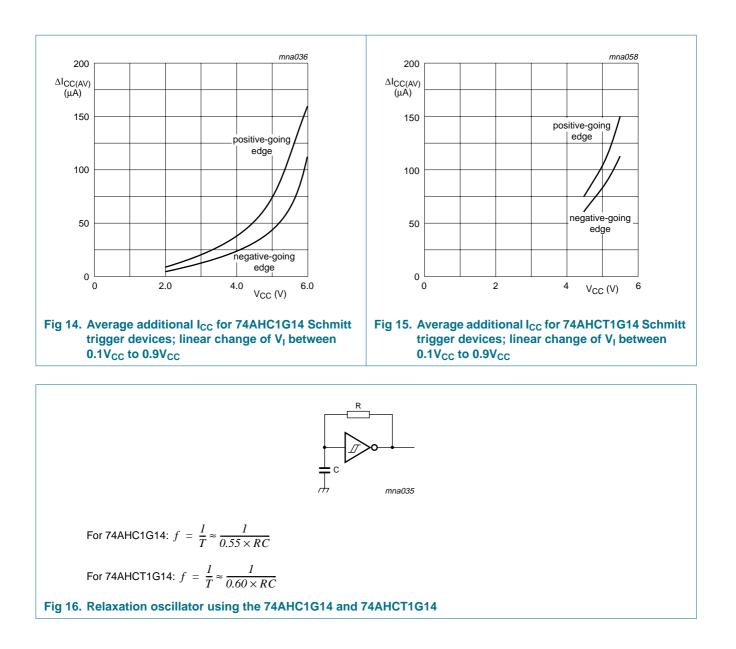
 $P_{add} = f_i \times (t_r \times \Delta I_{CC(AV)} + t_f \times \Delta I_{CC(AV)}) \times V_{CC}$ where:

 P_{add} = additional power dissipation (μ W);

- $f_i = input frequency (MHz);$
- t_r = input rise time (ns); 10 % to 90 %;
- t_f = input fall time (ns); 90 % to 10 %;

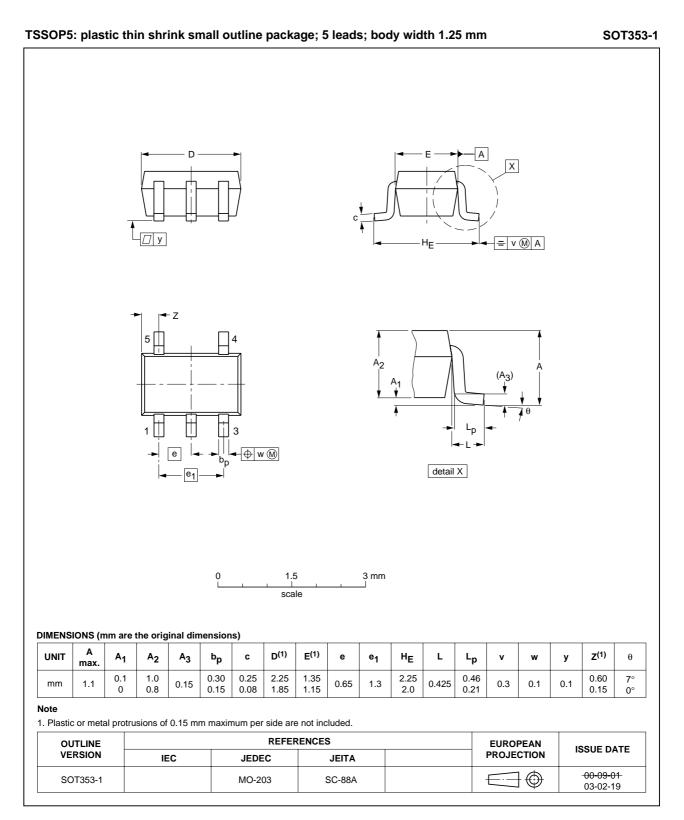
 $\Delta I_{CC(AV)}$ = average additional supply current (µA).

Average additional I_{CC} differs with positive or negative input transitions, as shown in Figure 14 and Figure 15.

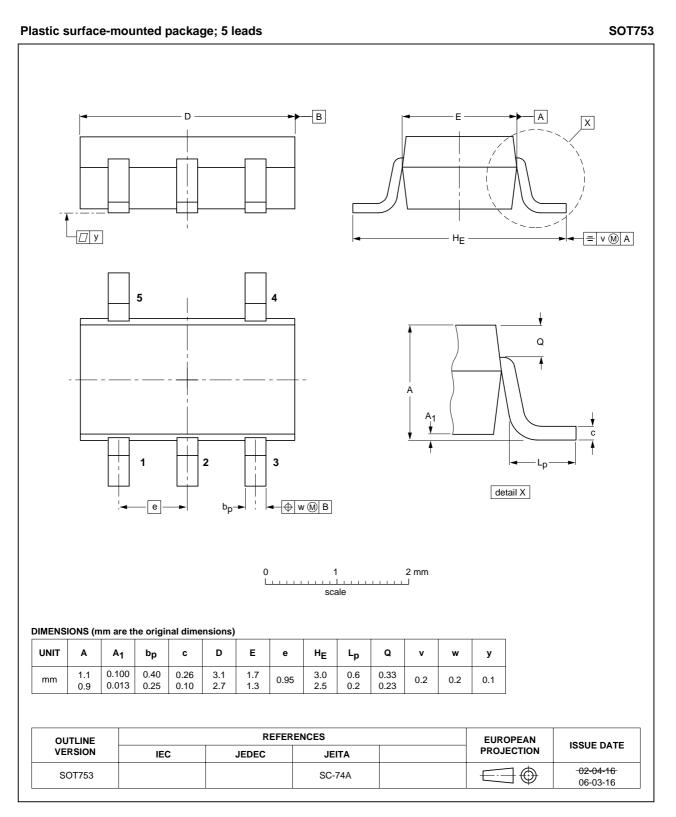

For 74AHC1G14 and 74AHCT1G14 used in relaxation oscillator circuit, see Figure 16.

Note to the application information:

1. All values given are typical unless otherwise specified.


74AHC1G14; 74AHCT1G14

Inverting Schmitt trigger


Inverting Schmitt trigger

15. Package outline

Fig 17. Package outline SOT353-1 (TSSOP5)

Inverting Schmitt trigger

Fig 18. Package outline SOT753 (SC-74A)

Inverting Schmitt trigger

16. Abbreviations

Table 11.	Abbreviations
Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

17. Revision history

Table 12. Revision history									
Document ID	Release date	Data sheet status	Change notice	Supersedes					
74AHC_AHCT1G14_5	20070629	Product data sheet	-	74AHC_AHCT1G14_4					
Modifications:	Modifications: • The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors.								
	 Legal texts h 	ave been adapted to the new o	company name whe	re appropriate.					
	 Package SO 	T353 changed to SOT353-1 in	Section 4 and Section	<u>on 15</u> .					
	 Quick reference 	nce data and Soldering sectior	s removed.						
74AHC_AHCT1G14_4	20020528	Product specification	-	74AHC_AHCT1G14_3					
74AHC_AHCT1G14_3	20020218	Product specification	-	74AHC_AHCT1G14_2					
74AHC_AHCT1G14_2	20010222	Product specification	-	74AHC_AHCT1G14_1					
74AHC_AHCT1G14_1	19990805	Product specification	-	-					

18. Legal information

18.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

18.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

74AHC1G14; 74AHCT1G14

Inverting Schmitt trigger

20. Contents

1	General description 1
2	Features 1
3	Applications
4	Ordering information 1
5	Marking 2
6	Functional diagram 2
7	Pinning information 2
7.1	Pinning 2
7.2	Pin description 2
8	Functional description 3
9	Limiting values 3
10	Recommended operating conditions 3
11	Static characteristics 4
11.1	Transfer characteristics 5
12	Dynamic characteristics 6
13	Waveforms 7
13.1	Transfer characteristic waveforms 7
14	Application information 9
15	Package outline 11
16	Abbreviations 13
17	Revision history 13
18	Legal information 14
18.1	Data sheet status 14
18.2	Definitions 14
18.3	Disclaimers
18.4	Trademarks 14
19	Contact information 14
20	Contents 15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 29 June 2007 Document identifier: 74AHC_AHCT1G14_5

